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Abstract: We introduce a new class of division algebras, the hyperpolyadic algebras, which corre-
spond to the binary division algebras R, C, H, O without considering new elements. First, we use
the matrix polyadization procedure proposed earlier which increases the dimension of the algebra.
The algebras obtained in this way obey binary addition and a nonderived n-ary multiplication and
their subalgebras are division n-ary algebras. For each invertible element, we define a new norm
which is polyadically multiplicative, and the corresponding map is a n-ary homomorphism. We
define a polyadic analog of the Cayley–Dickson construction which corresponds to the consequent
embedding of monomial matrices from the polyadization procedure. We then obtain another series of
n-ary algebras corresponding to the binary division algebras which have a higher dimension, which
is proportional to the intermediate arities, and which are not isomorphic to those obtained by the
previous constructions. Second, a new polyadic product of vectors in any vector space is defined,
which is consistent with the polyadization procedure using vectorization. Endowed with this intro-
duced product, the vector space becomes a polyadic algebra which is a division algebra under some
invertibility conditions, and its structure constants are computed. Third, we propose a new iterative
process (we call it the “imaginary tower”), which leads to nonunital nonderived ternary division
algebras of half the dimension, which we call “half-quaternions” and “half-octonions”. The latter
are not the subalgebras of the binary division algebras, but subsets only, since they have different
arity. Nevertheless, they are actually ternary division algebras, because they allow division, and their
nonzero elements are invertible. From the multiplicativity of the introduced “half-quaternion” norm,
we obtain the ternary analog of the sum of two squares identity. We show that the ternary division
algebra of imaginary “half-octonions” is unitless and totally associative.

Keywords: hypercomplex algebra; ternary algebra; n-ary algebra; querelement; quaternion; octonion;
Cayley–Dickson construction; division algebra; structure constant; vector space; vectorization; vector
multiplication
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1. Introduction

The field extension is a fundamental concept of algebra [1–3] and number theory [4–6].
Informally, the main idea is to enlarge a given structure in a special way (using elements
from outside the underlying set) and try to obtain a resulting algebraic structure with
“good” properties. One of the first well-known examples is the field of complex numbers
C, which is a simple field extension of real numbers R. The direct generalization of
this construction leads to the hypercomplex numbers (see, e.g., [7,8]) defined as finite
D-dimensional algebras A over the reals with a special basis (with squares restricted to
0,±1). Among numerous versions of hypercomplex number systems [9,10] (for a modern
review, see, e.g., [11,12]), only the complex numbers A = C (D = 2), quaternions A = H
(D = 4), and octonions A = O (D = 8) are classical division algebras (with no zero divisors
or nilpotents) [13–15], and the latter two can be obtained via the Cayley–Dickson doubling
procedure [16–18].

Mathematics 2024, 12, 2378. https://doi.org/10.3390/math12152378 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12152378
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1184-6952
https://doi.org/10.3390/math12152378
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12152378?type=check_update&version=1


Mathematics 2024, 12, 2378 2 of 28

In this paper, we construct nonderived hyperpolyadic structures corresponding to
the above division algebras without introducing new elements (as in, e.g., [19,20]). Recall
the numerous applications of higher arity structures in physics [21–23], in particular in
particle dynamical models [24–26] and supersymmetry [27–29]. There are plenty of n-ary
generalizations of associative and Lie algebras, for examples and reviews, see [30–33].

Here, we will first use the matrix polyadization procedure proposed by the author
in [34]. We show that the polyadic analog of the Cayley–Dickson construction can only lead
to non-division algebras of higher dimensions than the initial division algebras. For the
n-ary algebras thus obtained, we introduce a new norm which is polyadically multiplicative
and is well defined for invertible elements.

Second, we propose a new polyadic product of vectors in any vector space, which
is consistent with the polyadization procedure using vectorization. Endowed with this
product, the vector space becomes a polyadic algebra, which is a division algebra under
some invertibility conditions. Its structure constants are computed, and a numerical
example is given.

Third, on the subsets of the binary division algebras, we propose another new construc-
tion (we call it the “imaginary tower”) and an iterative process which naturally gives the
corresponding nonderived ternary division algebras of half a dimension. The latter are not
subalgebras, because they have a different multiplication and different arity than the initial
algebras. We call the nonunital ternary algebras obtained in this way “half-quaternions”
and “half-octonions”. They are actually division algebras, because nonzero elements are
invertible and thus allow division. From the multiplicativity of the “half-quaternion” norm,
we obtain the ternary analog of the sum of two squares identity. Finally, we show that the
unitless ternary division algebra of imaginary “half-octonions” is ternary totally associative.

2. Preliminaries

Here, we briefly remind the reader of notation from [34]. A (one-set) polyadic algebraic
structure A is a set A closed with respect to polyadic operations (or n-ary multiplication)
µ[n] : An → A (n-ary magma). We denote polyads [35] as a⃗ = a⃗(k) = (a1, . . . , ak), ai ∈ A,

and ak =

k(︷ ︸︸ ︷
a, . . . , a

)
, a ∈ A (usually, the value of k follows from the context). A (positive)

polyadic power is

a⟨ℓµ⟩ =
(

µ[n]
)◦ℓµ

[
aℓµ(n−1)+1

]
, a ∈ A, ℓµ ∈ N. (1)

A polyadic ℓµ-idempotent (or idempotent for ℓµ = 1) is defined by a⟨ℓµ⟩ = a. A polyadic
zero is defined by µ[n] [⃗a, z] = z, z ∈ A, a⃗ ∈ An−1, where z can be on any place. An element
of a polyadic algebraic structure a is called ℓµ-nilpotent (or nilpotent for ℓµ = 1), if there

exist ℓµ such that a⟨ℓµ⟩ = z. A polyadic (or n-ary) identity (or neutral element) is defined
by

µ[n]
[
a, en−1

]
= a, ∀a ∈ A, (2)

where a can be on any place on the l.h.s. of (2). In addition, there exist neutral polyads
(usually not unique) satisfying

µ[n][a, n⃗] = a, ∀a ∈ A. (3)

A one-set polyadic algebraic structure
〈
A | µ[n]

〉
is totally associative, if

(
µ[n]
)◦2[⃗

a, b⃗, c⃗
]
= µ[n]

[⃗
a, µ[n]

[⃗
b
]
, c⃗
]
= invariant, (4)

with respect to the placement of the internal multiplication on any of the n places, and
a⃗, b⃗, c⃗ are polyads of the necessary sizes.



Mathematics 2024, 12, 2378 3 of 28

A polyadic semigroup S[n] is a one-set and one-operation structure in which µ[n] is
totally associative. A polyadic structure is (totally) commutative, if µ[n] = µ[n] ◦ σ, for all
σ ∈ Sn. A polyadic structure is solvable, if for all polyads b, c and an element x, one can
(uniquely) resolve the Equation (with respect to x) for µ[n]

[⃗
b, x, c⃗

]
= a, where x can be on

any place, and b⃗, c⃗ are polyads of the needed lengths. A solvable polyadic structure is called
n-ary quasigroup [36]. An associative polyadic quasigroup is called a n-ary (or polyadic)
group G[n] (for a review, see, e.g., [37]). In an n-ary group, the only solution of

µ[n]
[
an−1, ã

]
= a, a, ã ∈ A, (5)

is called the querelement (the polyadic analog of an inverse) of a and denoted by ã [38],
where ã can be on any place. The relation (5) can be considered as a definition of the unary
queroperation µ̄(1)[a] = ã [39].

For further details and references, see [34].

3. Matrix Polyadization

Let us briefly (just to establish notation and terminology) recall that the 2−, 4−, 8-dimensional
algebras are the only hypercomplex extensions of the reals A = R (Hurwitz’s theorem
for composition algebras) A = D = C,H,O which are normed division algebras. The
first two are associative (and can be represented by matrices), and only C is commuta-
tive (being a field). We use the unified notation z ∈ D, and if we need to distinguish
and concretize, the standard parametrization will be exploited C ∋z = z(2) = a + bi and
H ∋z = z(4) = a + bi + cj + dk, etc., a, d, c, d ∈ R. The standard Euclidean norm (2-norm)
∥z∥ =

√
z∗z (where the conjugate is z∗(2) = a − bi, etc.), for z ∈ D (which for C coincides

with the modulus
∥∥∥z(2)

∥∥∥ =
∣∣∣z(2)∣∣∣ = √

a2 + b2, and
∥∥∥z(4)

∥∥∥ =
√

a2 + b2 + c2 + d2, etc.) has
the properties

∥1∥ = 1, (6)

∥λz∥ = |λ|∥z∥, (7)∥∥z′ + z′′
∥∥ ≤ ∥∥z′

∥∥+ ∥∥z′′
∥∥, 1, λ ∈ R, 1, z, z′, z′′ ∈ D, (8)

and is multiplicative
∥z1z2∥ = ∥z1∥∥z2∥ ∈ R⩾0, z ∈ D, (9)

such that the corresponding mapping D → R⩾0 is a homomorphism. Each nonzero
element of the above normed unital algebra has the multiplicative inverse z−1z = 1,
because the norm vanishes only for z = 0 and there are no zero divisors, and therefore,
from ∥z∥2 = z∗z ∈ R⩾0, it follows that

z−1 =
z∗

∥z∥2 , z ∈ D \ {0}. (10)

To construct the polyadic analogs of the binary hypercomplex algebras A and, in
particular, of the binary division algebras D (over R), we use the polyadization procedure
proposed in [34] (called there block-matrix polyadization). It is based on the general
structure theorem for polyadic rings (a generalization of the Wedderburn theorem): any
simple (2, n)-ring is isomorphic to the ring of special cyclic shift block-matrices (of the
shape (11)) over a division ring [40].

Let us introduce the (n − 1)× (n − 1) cyclic shift weighted matrix with the elements
from the algebra A
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Z = Z[n] =



0 z1 . . . 0 0
0 0 z2 . . . 0

0 0
. . . . . .

...
...

...
. . . 0 zn−2

zn−1 0 . . . 0 0

, zi ∈ A. (11)

The matrices of such a shape, i.e., (11) play a considerable role in coding [41] and were
intensively studied in [42,43]. Here, we will apply the cyclic shift weighted matrices to the
polyadization procedure introduced in [34].

The set of matrices of the form (11) is closed with respect to the ordinary product (·) of
exactly n matrices, but not of fewer. Therefore, we can define the n-ary multiplication [34]

µ
[n]
Z


n︷ ︸︸ ︷

Z′, Z′′ . . . Z′′′

 = Z′ · Z′′ · . . . · Z′′′ = Z = Z[n], (12)

which is nonderived in the sense that the binary (and all ≤ n − 1) products of Z[n]’s are
outside the set (11).

Remark 1. The binary addition in the algebra A transfers in the standard way to matrix addition (as
component-wise addition), and so we will mostly pay attention to the multiplicative part, implying
that the addition of Z-matrices (11) is always binary.

Definition 1. We call the following new algebraic structure

A[n] =
〈{

Z[n]
}
| (+), µ

[n]
Z

〉
(13)

a n-ary hypercomplex algebra A[n] which corresponds to the binary hypercomplex algebra A by the
matrix polyadization procedure.

Proposition 1. The dimension D[n] of the n-ary hypercomplex algebra A[n] is

D[n] = dimA[n] = D(n − 1). (14)

Proof. It obviously follows from (11).

Proposition 2. If the binary hypercomplex algebra A is associative (for the dimensions D = 1,
D = 2 and D = 4), the n-ary multiplication (12) in components has the cyclic product form [34]

n︷ ︸︸ ︷
z′1z′′2 . . . z′′′n−1z′′′′1 = z1,

n︷ ︸︸ ︷
z′2z′′3 . . . z′′′1 z′′′′2 = z2,

...
n︷ ︸︸ ︷

z′n−1z′′1 . . . z′′′n−2z′′′′n−1 = zn−1, zi, z′i, . . . , z′′′i , z′′′′i ∈ A. (15)

Proof. This follows from (11) and (12).

Remark 2. The cycled product (15) can be treated as a n-ary extension of the Jordan pair [44,45],
which is different from [46].



Mathematics 2024, 12, 2378 5 of 28

Proposition 3. If A is unital, then A[n] contains a n-ary unit (polyadic identity (2)), being the
permutation (cyclic shift) matrix of the form

E[n] =



0 1 . . . 0 0
0 0 1 . . . 0

0 0
. . . . . .

...
...

...
. . . 0 1

1 0 . . . 0 0

 ∈ A[n], 1 ∈ A. (16)

Proof. It follows from (11), (12), and (15).

Consider now the polyadization of the hypercomplex two-dimensional algebra of
dual numbers.

Example 1 (4-ary dual numbers). The commutative and associative two-dimensional algebra
Adu = ⟨{z} | (+), (·)⟩ is defined by the element z = a + bε with ε2 = 0, a, b ∈ R. The

binary multiplication µ
[2]
v of pairs (2-tuples) v2 =

(
a
b

)
∈ Atu

du = A[2],tu
du =

〈
{v2} | (+), µ[2]

〉
(addition is component-wise, see Remark 1) is

µ
[2]
v

[(
a′

b′

)
,
(

a′′

b′′

)]
=

(
a′a′′

a′b′′ + b′a′′

)
∈ Atu

du, a′, a′′, b′, b′′ ∈ R. (17)

It follows from (17) that Atu
du (and so also Adu) constitutes non-division algebra, because it contains

idempotents and zero divisors (e.g.,
(

0
b

)2

=

(
0
0

)
).

Using the matrix polyadization procedure, we construct a 4-ary algebraA[4]
du =

〈{
Z[4]
}
| (+), µ[4]

〉
of dimension D[4] = 6 (see (14)) by introducing the following 3× 3 cyclic shift weighted matrix (11)

Z[4] =

 0 z1 0
0 0 z2
z3 0 0

 =

 0 a1 + b1ε 0
0 0 a2 + b2ε

a3 + b3ε 0 0

 ∈ A[4]
du , z1, z2, z3 ∈ Adu. (18)

The cyclic product of the components (15) becomes

z′1z′′2 z′′′3 z′′′′1 = z1,

z′2z′′3 z′′′1 z′′′′2 = z2,

z′3z′′1 z′′′2 z′′′′3 = z3, zi, z′i, z′′i , z′′′i , z′′′′i ∈ Adual . (19)

In terms of 6-tuples v6 overR (cf. (17)), the 4-ary multiplication µ[4] inA[4],tu
du =

〈
{v6} | (+), µ

[4]
v

〉
has the form
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µ
[4]
v





a′1
b′1
a′2
b′2
a′3
b′3

,



a′′1
b′′1
a′′2
b′′2
a′′3
b′′3

,



a′′′1
b′′′1
a′′′2
b′′′2
a′′′3
b′′′3

,



a′′′′1
b′′′′1
a′′′′2
b′′′′2
a′′′′3
b′′′′3





=



a′1a′′2 a′′′3 a′′′′1
a′1a′′2 a′′′3 b′′′′1 + a′1a′′2 b′′′3 a′′′′1 + a′1b′′2 a′′′3 a′′′′1 + b′1a′′2 a′′′3 a′′′′1

a′2a′′3 a′′′1 a′′′′2
a′2a′′′1 a′′3 b′′′′2 + a′2a′′3 b′′′1 a′′′′2 + a′2b′′3 a′′′1 a′′′′2 + b′2a′′3 a′′′1 a′′′′2

a′3a′′1 a′′′2 a′′′′3
a′3a′′1 a′′′2 b′′′′3 + a′3a′′1 b′′′2 a′′′′3 + a′3b′′1 a′′′2 a′′′′3 + b′3a′′1 a′′′2 a′′′′3

, (20)

which is nonderived and noncommutative due to braidings in the cyclic product (19). The polyadic
unit (4-ary unit) in the 4-ary algebra of 6-tuples e[4]6 is defined by the equation (see (2))

µ
[4]
v

[
v6, e[4]6 , e[4]6 , e[4]6

]
= v6, ∀v6 ∈ A[4],tu

du , (21)

where v6 can be on any place. Using 4-ary product (20) and the definition (21), we obtain the
manifest form of the polyadic unit of the 4-ary algebra of 6-tuples A[4],tu

du

e
[4]
6 =



1
0
1
0
1
0

 ∈ A[4],tu
du . (22)

It follows from (20) that A[4],tu
du (and so also A[4]

dual) is a non-division 4-ary algebra, and not a field
(similarly to the ordinary binary Adu), because it contains 4-ary idempotents and zero divisors, for
instance,

µ
[4]
v





0
b1
0
b2
a3
b3



4
= µ

[4]
v





a1
b1
0
b2
0
b3



4
= µ

[4]
v





0
b1
a2
b2
0
b3



4
=



0
0
0
0
0
0

 = 0v. (23)

Thus, the application of the matrix polyadization procedure to the commutative, associative,
unital, two-dimensional, non-division algebra of dual numbers Adu gives a noncommutative, 4-ary
nonderived totally associative, unital, six-dimensional, non-division algebra A[4]

du over R, which we
call the 4-ary dual numbers.

4. Polyadization of Division Algebras

Let us consider the matrix polyadization procedure for the division algebras D =
R,C,H,O in more detail, paying attention to invertibility and norms.

Recall that the binary division algebra D (without zero element) forms a group (with
respect to binary multiplication) having the inverse (10). The polyadic counterpart of the
binary inverse is the querelement (5).
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Theorem 1. The nonderived n-ary algebra (13) constructed from the binary division algebra D is
the n-ary algebra

D[n] =
〈{

Z[n]
}
| (+), µ

[n]
Z , Z̃[n]

〉
, (24)

where Z̃[n] is the querelement

Z̃ = Z̃[n] =



0 z̃1 . . . 0 0
0 0 z̃2 . . . 0

0 0
. . . . . .

...
...

...
. . . 0 z̃n−2

z̃n−1 0 . . . 0 0

, (25)

which satisfies (provided D is associative)

µ
[n]
Z

 n−1︷ ︸︸ ︷
Z, Z . . . ZZ̃

 =

n−1︷ ︸︸ ︷
Z · Z · . . . · Z · Z̃ = Z, ∀Z ∈ D[n], (26)

and Z̃ can be on any place, such that

z̃i = z−1
i−1z−1

i−2 . . . z−1
2 z−1

1 z−1
n−1z−1

n−1 . . . z−1
i+2z−1

i+1, zi ∈ D\{0}. (27)

Proof. The main relation (27) follows from (26) in components (15) as the following cycle
products

n︷ ︸︸ ︷
z1z2 . . . zn−1z̃1 = z1,

n︷ ︸︸ ︷
z2z3 . . . zn−1z1z̃2 = z2,

...
n︷ ︸︸ ︷

zn−1z1 . . . zn−2z̃n−1 = zn−1, zi, z̃i ∈ D\{0}, (28)

are obtained by applying z−1
i (which exists in D for nonzero z (10)) from the left (n − 1)

times (with suitable indices) to both sides of each equation in (28) to obtain z̃i.

Corollary 1. Each D-dimensional division algebra over the reals D = C,H,O (including R itself
as the one-dimensional case) has as its n polyadic counterparts (where n is arbitrary) the nonderived
n-ary non-division algebras D[n] (24) of dimension D(n − 1) (having the polyadic unit (16) and
the querelement (25) for invertible zi ∈ D\{0}) constructed by the matrix polyadization procedure.

Theorem 2. The matrix polyadization procedure changes the invertibility properties of the initial
algebra, that is, the polyadization of a binary division algebra D leads to a n-ary non-division algebra
D[n] for arbitrary n.

Proof. The polyadization procedure is provided by monomial matrices which have a
determinant proportional to the product of nonzero entries. The nonzero elements of D[n]

having some of zi = 0 are noninvertible, and therefore, D[n] is not a field.

Nevertheless, a special subalgebra of D[n] can be a division n-ary algebra, that is, when
Z-matrix is a monomial matrix, having one non-zero entry in each row and each column
(see, e.g., [47]).
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Theorem 3. The elements of D[n] which have all invertible zi ∈ D\{0} (or set of invertible
Z-matrices det Z ̸= 0) form a subalgebra D[n]

div ⊂ D[n] which is the division n-ary algebra corre-
sponding to the division algebra D = R,C,H,O.

The simplest case is obtained by the polyadization of the reals.

Example 2 (Five-ary real numbers). The 5-ary associative algebra of real numbers is R[5] =〈{
R[5]

}
| (+), µ

[5]
R

〉
, where R[5] is the cyclic 4 × 4 block-shift matrix (11) with real entries

R[5] =


0 a1 0 0
0 0 a2 0
0 0 0 a3
a4 0 0 0

, (29)

det R[5] = a1a2a3a4, ai ∈ R, (30)

and the multiplication µ
[5]
R is an ordinary product of five matrices. Only with respect to the product

of 5 elements R[5] is the algebra closed, and therefore R[5] is nonderived. In components, we have the
braiding cyclic products (15) for ai. If ai ∈ R \ {0}, the component equations for the querelement
(28) (after the cancellation of nonzero ai) become

a2a3a4 ã1 = 1, (31)

a3a4a1 ã2 = 1, (32)

a4a1a2 ã3 = 1, (33)

a1a2a3 ã4 = 1. (34)

Thus, the querelement for an invertible (29) is

R̃[5] =



0
1

a2a3a4
0 0

0 0
1

a3a4a1
0

0 0 0
1

a4a1a2
1

a1a2a3
0 0 0


, ai ∈ R \ {0}, (35)

and therefore, the algebra R[5] of 5-ary real numbers is a non-division algebra, because the elements
with some ai = 0 are in R[5], but they are noninvertible (due to (30)), and so R[5] is not a field. But
the subalgebra R[5]

div ⊂ R[5] of invertible (monomial) matrices R[5] (det R[5] ̸= 0, with all ai ̸= 0)
is a division n-ary algebra of reals (see Theorem 3).

Now, we provide the example of the 4-ary algebra of complex numbers, to compare it
with the dual numbers of the same arity in Example 1.

Example 3 (4-ary complex numbers). First, we establish notations, as before. The commutative
and associative two-dimensional algebra of complex numbers is C = ⟨{z} | (+), (·)⟩, where
z = a + bi with i2 = −1, a, b ∈ R. The binary multiplication µ

[2]
v = µ

[2]
compl of pairs

v2 =

(
a
b

)
∈ Ctu =

〈
{v2} | (+), µ

[2]
v

〉
(36)
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(where addition is component-wise, see Remark 1) is

µ
[2]
v

[(
a′

b′

)
,
(

a′′

b′′

)]
=

(
a′a′′ − b′′b′

b′′a′ + b′a′′

)
∈ Ctu, a′, a′′, b′, b′′ ∈ R. (37)

The algebra of pairs Ctu does not contain idempotents or zero divisors, its multiplication agrees
with one of C (z′ · z′′ = z), and therefore, it is a division algebra, being isomorphic to C

Ctu ∼= C. (38)

Using the matrix polyadization procedure, we construct the nonderived 4-ary algebra of
complex numbers C[4] =

〈{
Z[4]

}
| (+), µ

[4]
Z

〉
of the dimension D[4] = 6 (see (14)) by introducing

the following 3 × 3 matrix (11)

Z = Z[4] =

 0 z1 0
0 0 z2
z3 0 0

 =

 0 a1 + b1i 0
0 0 a2 + b2i

a3 + b3i 0 0

 ∈ C[4], z1, z2, z3 ∈ C. (39)

The 4-ary product of Z-matrices (39) is

µ
[4]
Z
[
Z′, Z′′, Z′′′, Z′′′′] = Z′Z′′Z′′′Z′′′′. (40)

The corresponding to (40) cyclic product in the components (15) becomes

z′1z′′2 z′′′3 z′′′′1 = z1,

z′2z′′3 z′′′1 z′′′′2 = z2,

z′3z′′1 z′′′2 z′′′′3 = z3, zi, z′i, z′′i , z′′′i , z′′′′i ∈ C. (41)

In terms of six-tuples v6 overR (cf. (17)), the 4-ary multiplication µ
[4]
v inC[4],tu =

〈
{v6} | (+), µ

[4]
v

〉
has the form (cf. (37))

µ
[4]
v





a′1
b′1
a′2
b′2
a′3
b′3

,



a′′1
b′′1
a′′2
b′′2
a′′3
b′′3

,



a′′′1
b′′′1
a′′′2
b′′′2
a′′′3
b′′′3

,



a′′′′1
b′′′′1
a′′′′2
b′′′′2
a′′′′3
b′′′′3





=



a′1a′′2 a′′′3 a′′′′1 − a′1b′′2 b′′′3 a′′′′1 − b′1a′′2 b′′′3 a′′′′1 − b′1b′′2 a′′′3 a′′′′1 − a′1a′′2 b′′′3 b′′′′1 − a′1b′′2 a′′′3 b′′′′1 − b′1a′′2 a′′′3 b′′′′1 + b′1b′′2 b′′′3 b′′′′1
a′1a′′2 b′′′3 a′′′′1 + a′1b′′2 a′′′3 a′′′′1 + b′1a′′2 a′′′3 a′′′′1 + a′1a′′2 a′′′3 b′′′′1 − b′1b′′2 b′′′3 a′′′′1 − a′1b′′2 b′′′3 b′′′′1 − b′1a′′2 b′′′3 b′′′′1 − b′1b′′2 a′′′3 b′′′′1
a′2a′′3 a′′′1 a′′′′2 − a′2b′′3 b′′′1 a′′′′2 − b′2b′′3 a′′′1 a′′′′2 − b′2a′′3 b′′′1 a′′′′2 − a′2b′′3 a′′′1 b′′′′2 − a′2a′′3 b′′′1 b′′′′2 − b′2a′′3 a′′′1 b′′′′2 + b′2b′′3 b′′′1 b′′′′2
a′2b′′3 a′′′1 a′′′′2 + a′2a′′3 b′′′1 a′′′′2 + b′2a′′3 a′′′1 a′′′′2 + a′2a′′3 a′′′1 b′′′′2 − b′2b′′3 b′′′1 a′′′′2 − a′2b′′3 b′′′1 b′′′′2 − b′2b′′3 a′′′1 b′′′′2 − b′2a′′3 b′′′1 b′′′′2
a′3a′′1 a′′′2 a′′′′3 − b′3a′′1 b′′′2 a′′′′3 − a′3b′′1 b′′′2 a′′′′3 − b′3b′′1 a′′′2 a′′′′3 − a′3a′′1 b′′′2 b′′′′3 − b′3a′′1 a′′′2 b′′′′3 − a′3b′′1 a′′′2 b′′′′3 + b′3b′′1 b′′′2 b′′′′3
a′3a′′1 b′′′2 a′′′′3 + b′3a′′1 a′′′2 a′′′′3 + a′3b′′1 a′′′2 a′′′′3 + a′3a′′1 a′′′2 b′′′′3 − b′3b′′1 b′′′2 a′′′′3 − b′3a′′1 b′′′2 b′′′′3 − a′3b′′1 b′′′2 b′′′′3 − b′3b′′1 a′′′2 b′′′′3

, (42)

which is nonderived and noncommutative due to braidings in the cyclic product (19). The polyadic
unit (4-ary unit) in the 4-ary algebra of 6-tuples is (see (2))

e6 =



1
0
1
0
1
0

 ∈ C[4],tu, (43)

µ
[4]
v [e6, e6, e6, v6] = µ

[4]
v [e6, e6, v6, e6] = µ

[4]
v [e6, v6, e6, e6] = µ

[4]
v [v6, e6, e6, e6] = v6. (44)
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The querelement (5) and (25) for invertible elements of the 4-ary algebra of complex numbers
C[4] has the matrix form which follows from the equations (28)

Z̃[4] =

 0 1
z2z3

0
0 0 1

z1z3
1

z1z2
0 0

 ∈ C[4], z1, z2, z3 ∈ C\{0}. (45)

Thus, C[4] =
〈{

Z[4]
}
| (+), µ[4], (̃ )

〉
is the nonderived 4-ary non-division algebra over R

obtained by the matrix polyadization procedure from the algebra C of complex numbers. The 4-ary
algebra of complex numbers C[4] is not a field, because it contains noninvertible nonzero elements
(with some zi = 0).

In C[4],tu the querelement is given by the following 6-tuple

ṽ6 =

̃

a1
b1
a2
b2
a3
b3

 =



a2a3 − b2b3

(a2b3 + a3b2)
2 + (a2a3 − b2b3)

2

− a2b3 + a3b2

(a2b3 + a3b2)
2 + (a2a3 − b2b3)

2

a1a3 − b1b3

(a1b3 + a3b1)
2 + (a1a3 − b1b3)

2

− a1b3 + a3b1

(a1b3 + a3b1)
2 + (a1a3 − b1b3)

2

a1a2 − b1b2

(a1b2 + a2b1)
2 + (a1a2 − b1b2)

2

− a1b2 + a2b1

(a1b2 + a2b1)
2 + (a1a2 − b1b2)

2



, ai, bi ∈ R. (46)

Therefore, C[4],tu is a division nonderived 4-ary algebra isomorphic to C[4].
Thus, the application of the matrix polyadization procedure to the commutative, associative,

unital, two-dimensional, division algebra of complex numbers C gives the noncommutative, 4-ary
nonderived, totally associative, unital, six-dimensional, non-division algebra C[4] over R (with the
corresponding isomorphic 4-ary non-division algebra of 6-tuples C[4],tu), which we call the 4-ary
complex numbers. The subalgebra C[4]

div ⊂ C[4] of invertible matrices Z[4] (det Z[4] ̸= 0, with all
zi ̸= 0) is the division 4-ary algebra of complex numbers (by Theorem 3).

We then consider the polyadization of the noncommutative quaternion algebra H.

Example 4 (Ternary quaternions). The associative four-dimensional algebra of quaternions is
given by

H = ⟨{q} | (+), (·)⟩, q = a + bi + cj + dk,

ij = k, ij = −ji, (+cycled), i2 = j2 = k2 = ijk = −1, a, b, c, d ∈ R. (47)

The binary multiplication µ
[4]
v of the quadruples

v4 =


a
b
c
d

 ∈ Htu =
〈
{v4} | (+), µ

[2]
v

〉
(48)
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is (we present the binary product in our notation here for completeness to compare with the ternary
case below)

µ
[4]
v




a′

b′

c′

d′

,


a′′

b′′

c′′

d′′


 =


a′a′′ − b′b′′ − c′c′′ − d′d′′

a′b′′ + b′a′′ − d′c′′ + c′d′′

a′c′′ + c′a′′ + d′b′′ − b′d′′

a′d′′ + b′c′′ − c′b′′ + d′a′′

 ∈ Htu, (49)

where a′, a′′, b′, b′′, c′, c′′, d′, d′′ ∈ R. The binary algebra of quadruples Htu is a noncommutative
division algebra (isomorphic to H), without idempotents or zero divisors.

By the above matrix polyadization procedure, we construct the nonderived ternary algebra of
quaternions H[3] =

〈{
Q[3]

}
| (+), µ

[3]
Q

〉
of the dimension D[3] = 8 (see (14)) by introducing the

following 2 × 2 matrix (11)

Q[3] =

(
0 q1
q2 0

)
=

(
0 a1 + b1i + c1j + d1k

a2 + b2i + c2j + d2k 0

)
∈ H[3], q1, q2 ∈ H. (50)

The nonderived ternary product of Q-matrices (39) is

µ
[3]
Q
[
Q′, Q′′, Q′′′] = Q′Q′′Q′′′. (51)

The cyclic product corresponding to (40) in components (15) becomes

q′
1q′′

2 q′′′
1 = q1,

q′
2q′′

1 q′′′
2 = q2, qi, q′

i, q′′
i , q′′′

i ∈ H. (52)

In terms of eight-tuples v8 over R (cf. (17)), the ternary multiplication µ
[3]
v in H[3],tu =

〈
{v8} | (+), µ

[3]
v

〉
has the form (cf. (37))

µ
[3]
v

[
v′8, v′′8 , v′′′8

]
= µ

[3]
v





a′1
b′1
c′1
d′1
a′2
b′2
c′2
d′2


,



a′′1
b′′1
c′′1
d′′1
a′′2
b′′2
c′′2
d′′2


,



a′′′1
b′′′1
c′′′1
d′′′1
a′′′2
b′′′2
c′′′2
d′′′2




=



(
a′1a′′2 − b′1b′′2 − c′1c′′2 − d′1d′′2

)
a′′′1 −

(
a′1b′′2 + b′1a′′2 + c′1d′′2 − d′1c′′2

)
b′′′1 −

(
a′1c′′2 + c′1a′′2 + d′1b′′2 − b′1d′′2

)
c′′′1 −

(
a′1d′′2 + d′1a′′2 + b′1c′′2 − c′1b′′2

)
d′′′1(

a′1b′′2 + b′1a′′2 + c′1d′′2 − d′1c′′2
)

a′′′1 +
(

a′1a′′2 − b′1b′′2 − c′1c′′2 − d′1d′′2
)
b′′′1 −

(
a′1d′′2 + d′1a′′2 + b′1c′′2 − c′1b′′2

)
c′′′1 +

(
a′1c′′2 + c′1a′′2 + d′1b′′2 − b′1d′′2

)
d′′′1(

a′1c′′2 + c′1a′′2 + d′1b′′2 − b′1d′′2
)

a′′′1 +
(

a′1d′′2 + d′1a′′2 + b′1c′′2 − c′1b′′2
)
b′′′1 +

(
a′1a′′2 − b′1b′′2 − c′1c′′2 − d′1d′′2

)
c′′′1 −

(
a′1b′′2 + b′1a′′2 + c′1d′′2 − d′1c′′2

)
d′′′1(

a′1d′′2 + d′1a′′2 + b′1c′′2 − c′1b′′2
)

a′′′1 −
(

a′1c′′2 + c′1a′′2 + d′1b′′2 − b′1d′′2
)
b′′′1 +

(
a′1b′′2 + b′1a′′2 + c′1d′′2 − d′1c′′2

)
c′′′1 +

(
a′1a′′2 − b′1b′′2 − c′1c′′2 − d′1d′′2

)
d′′′1(

a′2a′′1 − b′2b′′1 − c′2c′′1 − d′2d′′1
)

a′′′2 −
(

a′2b′′1 + b′2a′′1 + c′2d′′1 − d′1c′′2
)
b′′′2 −

(
a′2c′′1 + c′2a′′1 + d′2b′′1 − b′2d′′1

)
c′′′2 +

(
a′2d′′1 + d′2a′′1 + b′2c′′1 − c′2b′′1

)
d′′′2(

a′1b′′2 + b′1a′′2 + c′1d′′2 − d′1c′′2
)

a′′′2 −
(

a′2b′′1 + b′2a′′1 + c′2d′′1 − d′2c′′1
)
b′′′2 −

(
a′2d′′1 + d′2a′′1 + b′2c′′1 − c′2b′′1

)
c′′′2 +

(
a′2c′′1 + c′2a′′1 + d′2b′′1 − b′2d′′1

)
d′′′2(

a′2c′′1 + c′2a′′1 + d′2b′′1 − b′2d′′1
)

a′′′2 +
(

a′2d′′1 + d′2a′′1 + b′2c′′1 − c′2b′′1
)
b′′′2 +

(
a′2a′′1 − b′2b′′1 − c′2c′′1 − d′2d′′1

)
c′′′2 −

(
a′2b′′1 + b′2a′′1 + c′2d′′1 − d′2c′′1

)
d′′′2(

a′2d′′1 + d′2a′′1 + b′2c′′1 − c′2b′′1
)

a′′′2 −
(

a′2c′′1 + c′2a′′1 + d′2b′′1 − b′2d′′1
)
b′′′2 +

(
a′2b′′1 + b′2a′′1 + c′2d′′1 − d′2c′′1

)
c′′′2 +

(
a′2a′′1 − b′2b′′1 − c′2c′′1 − d′2d′′1

)
d′′′2


(53)

where a′i, a′′i , a′′′i , b′i , b′′i , b′′′i , c′i, c′′i , c′′′i , d′i, d′′i , d′′′i ∈ R.

Remark 3. It is important to note that, although the ternary multiplication of 8-tuples (53) is
nonderived and noncommutative, it is not the ordinary product of three quaternion pairs, but
corresponds to the nontrivial cyclic braided products of (52).
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The polyadic unit (ternary unit) e8 in the ternary algebra of 8-tuples is (see (2))

e8 =



1
0
0
0
1
0
0
0


∈ H[3],tu, (54)

µ
[3]
v [e8, e8, v8] = µ

[3]
v [e8, v8, e8] = µ

[3]
v [v8, e8, e8] = v8. (55)

The querelement (5) and (25) of the nonderived noncommutative 8-dimensional ternary algebra
of quaternions H[3] has the matrix form which follows from the general equations (28)

Q̃[3] =

(
0 q−1

2
q−1

1 0

)
∈ H[3], q1, q2 ∈ H\{0}. (56)

Therefore, H[3] =
〈{

Q[3]
}
| (+), µ

[3]
Q , (̃ )

〉
is the nonderived noncommutative ternary non-

division algebra obtained by the matrix polyadization procedure from the algebra H of quaternions.
Because the elements Q[3] with q1 = 0 or q2 = 0 are nonzero, but noninvertible, H[3] is not a field.

In H[3],tu the querelement is given by the following 8-tuple

ṽ8 =

̃

a1
b1
c1
d1
a2
b2
c2
d2


=



a1

a2
1 + b2

1 + c2
1 + d2

1

− b1

a2
1 + b2

1 + c2
1 + d2

1

− c1

a2
1 + b2

1 + c2
1 + d2

1

− d1

a2
1 + b2

1 + c2
1 + d2

1a2

a2
2 + b2

2 + c2
2 + d2

2

− b2

a2
2 + b2

2 + c2
2 + d2

2

− c2

a2
2 + b2

2 + c2
2 + d2

2

− d2

a2
2 + b2

2 + c2
2 + d2

2



, a2
1,2 + b2

1,2 + c2
1,2 + d2

1,2 ̸= 0, ai, bi, ci, di ∈ R. (57)

Therefore, H[3],tu is a non-division ternary algebra isomorphic to H[3].
To conclude, the application of the matrix polyadization procedure to the noncommutative,

associative, unital, four-dimensional, division algebra of quaternions H gives the noncommutative,
nonderived ternary, totally associative, unital, 8-dimensional, non-division algebra H[3] over R
(with the corresponding isomorphic ternary non-division algebra of 8-tuples H[3],tu), which we call
the ternary quaternions. The subalgebra H[3]

div ⊂ H[3] of invertible matrices Q[3] (det Q[3] ̸= 0,
with all qi ̸= 0) is the division ternary algebra of quaternions (see Theorem 3).

5. Polyadic Norms

The division algebras D = R,C,H,O are normed as vector spaces, and the correspond-
ing Euclidean 2-norm is multiplicative (9), such that the corresponding mapping is a binary
homomorphism. It would be worthwhile to define a polyadic analog of the binary norm
∥ ∥ having similar properties.
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Definition 2. We define the polyadic (n-ary) norm ∥ ∥[n] for the n-ary algebra D[n], that is obtained
from D by the matrix polyadization procedure (11), as the product (in R) of the component norms

∥Z∥[n] = ∥z1∥∥z2∥ . . . ∥zn−1∥ ∈ R, Z ∈ D[n], zi ∈ D. (58)

Corollary 2. The polyadic norm (58) is zero for the noninvertible elements of D[n], having some
zi = 0.

Therefore, it is worthwhile to consider a polyadic norm for invertible elements of D[n]

only.

Proposition 4. The division n-ary subalgebras D[n]
div ⊂ D[n] are normed n-ary algebras with respect

to the polyadic norm ∥ ∥[n] (58).

Let us consider some properties of the polyadic norm (58).

Proposition 5. The polyadic norm ∥ ∥[n] introduced above (58) has the following properties (for
invertible Z ∈ D[n]) ∥∥∥E[n]

∥∥∥[n] = 1 ∈ R, E[n] ∈ D[n], (59)

∥λZ∥[n] = |λ|n−1∥Z∥[n], λ ∈ R, (60)∥∥Z′ + Z′′∥∥[n] ≤ ∥Z∥[n] + ∥Z∥[n], Z ∈ D[n], (61)

where E[n] is the polyadic unit in the n-ary algebra D[n] (16).

Proof. The first property is obvious, the second one follows from the definition (58), and
the linearity of the ordinary Euclidean norm in D (7). The polyadic triangle inequality (61)
follows from the binary triangle inequality (8), because of the binary addition of Z-matrices
of the cyclic block-shift form (11).

The norms satisfying (60) are called norms of higher degree, and they were investigated
for the binary case in [48].

The most important property of any (binary) norm is its multiplicativity (9).

Theorem 4. The polyadic norm ∥ ∥[n] defined in (58) is n-ary multiplicative (such that the
corresponding map D[n] → R is an n-ary homomorphism)

∥∥∥∥∥∥µ
[n]
Z

 n︷ ︸︸ ︷
Z′, Z′′ . . . Z′′′

∥∥∥∥∥∥
[n]

=

n︷ ︸︸ ︷∥∥Z′∥∥[n] · ∥∥Z′′∥∥[n] · . . . ·
∥∥Z′′′∥∥[n], Z′, Z′′, Z′′′ ∈ D[n]

div. (62)

Proof. Consider the component form (15) of each multiplier Z in (62), then use the defini-
tion (58) and commutativity (as they are in R) and the multiplicativity (9) of the ordinary
binary norms ∥ ∥ to rearrange the products of norms from l.h.s. to r.h.s. in (62). That is,

n−1︷ ︸︸ ︷∥∥z′1z′′2 . . . z′′′n−1z′′′′1
∥∥ · ∥∥z′2z′′3 . . . z′′′1 z′′′′2

∥∥ · . . . ·
∥∥z′n−1z′′1 . . . z′′′n−2z′′′′n−1

∥∥
=

n︷ ︸︸ ︷(∥∥z′1
∥∥∥∥z′2

∥∥ . . .
∥∥z′n−1

∥∥) · (∥∥z′′1
∥∥∥∥z′′2

∥∥ . . .
∥∥z′′n−1

∥∥) · . . . ·
(∥∥z′′′1

∥∥∥∥z′′′2
∥∥ . . .

∥∥z′′′n−1
∥∥) · (∥∥z′′′′1

∥∥∥∥z′′′′2
∥∥ . . .

∥∥z′′′′n−1
∥∥). (63)

Remark 4. The n-ary multiplicativity (62) of the polyadic norm introduced in (58) is independent
of the concrete form of the binary norm ∥ ∥, and only the multiplicativity of the latter is needed.
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Proposition 6. The polyadic norm of the querelement in n-ary division subalgebra D[n]
div is∥∥∥Z̃

∥∥∥[n] = 1(
∥Z∥[n]

)n−2 ∈ R>0, ∀Z̃ ∈ D[n]
div. (64)

Proof. It follows from the component relations for the querelements ∥z̃i∥ (28) and multi-
plicativity of the binary norm that

n︷ ︸︸ ︷
∥z1∥∥z2∥ . . . ∥zn−1∥∥z̃1∥ = ∥z1∥,

n︷ ︸︸ ︷
∥z2∥∥z3∥ . . . ∥zn−1∥∥z1∥∥z̃2∥ = ∥z2∥,

...
n︷ ︸︸ ︷

∥zn−1∥∥z1∥ . . . ∥zn−2∥∥z̃n−1∥ = ∥zn−1∥, zi, z̃i ∈ D, ∥zi∥, ∥z̃i∥ ∈ R>0. (65)

Multiplying all the equations in (65) and using the definition of the polyadic norm (58),
together with the component form (11) and the querelement (25), we obtain(

∥Z∥[n]
)n−1∥∥∥Z̃

∥∥∥[n] = ∥Z∥[n], (66)

from which follows (64).

Example 5. In the division, the 4-ary algebra of complex numbers C[4]
div from Example 3 the polyadic

norm becomes
∥Z∥[4] =

√(
a2

1 + b2
1
)(

a2
2 + b2

2
)(

a2
3 + b2

3
)
, ai, bi ∈ R. (67)

The polyadic norm of the querelement Z̃ in C[4] (64) is∥∥∥Z̃
∥∥∥[4] = 1(

a2
1 + b2

1
)(

a2
2 + b2

2
)(

a2
3 + b2

3
) , a2

i + b2
i ̸= 0, ai, bi ∈ R. (68)

Example 6. In the division ternary algebra of quaternions H[3]
div from Example 4 the polyadic norm

becomes
∥Q∥[3] =

√(
a2

1 + b2
1 + c2

1 + d2
1
)(

a2
2 + b2

2 + c2
2 + d2

2
)
, ai, bi ∈ R. (69)

The polyadic norm of the querelement Q̃ in H[3]
div (64) is∥∥∥Q̃

∥∥∥[3] = 1√(
a2

1 + b2
1 + c2

1 + d2
1
)(

a2
2 + b2

2 + c2
2 + d2

2
) , a2

i + b2
i + c2

i + d2
i ̸= 0, ai, bi ∈ R. (70)

Further properties of the polyadic norm ∥ ∥[n] can be investigated for invertible
elements of concrete n-ary algebras.

6. Polyadic Analog of the Cayley–Dickson Construction

The standard method of obtaining the higher hypercomplex algebras is the Cayley–
Dickson construction [18,49,50]. It is well known that all four binary division algebras
D = R,C,H,O can be built in this way [8]. Here, we generalize the Cayley–Dickson
construction to the polyadic (n-ary) division algebras introduced in the previous section.
As a result, the number of polyadic division algebras becomes infinite (as opposed to just
four in the binary case), because of the arbitrary initial and final arities of the algebras under
consideration. For illustration, we present several low arity examples, since higher arity
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cases become too cumbersome and difficult to see. First, we recall in brief (just to install our
notation) the ordinary (binary) Cayley–Dickson doubling process (in our notation, which is
convenient for the polyadization procedure).

6.1. Abstract (Tuple) Approach

Consider the sequence of algebras Aℓ, ℓ ≥ 0, over the reals, starting from A0 = R. The
main idea is to repeat the doubling process of the complex number construction using pairs
(doubles) (37) and taking into account the isomorphism (38) at each stage Aℓ → Aℓ+1. Let
us denote the binary algebra over R on the ℓ-th stage with the underlying set {Aℓ} as

Aℓ =
〈
{Aℓ} | (+), µ

[2]
ℓ , (∗ℓ)

〉
, (71)

where (∗ℓ) is involution in Aℓ and µ
[2]
ℓ : Aℓ ⊗Aℓ → Aℓ is its binary multiplication, and we

also will write µ
[2]
ℓ ≡ (·ℓ). The corresponding algebra of doubles (2-tuples)

v2(ℓ) =

(
a(ℓ)

b(ℓ)

)
, a(ℓ), b(ℓ) ∈ Aℓ, (72)

is denoted by
Atu
ℓ =

〈{
v2(ℓ)

}
| (+), µ

[2]
v(ℓ)

,
(
∗tu
ℓ

)〉
, (73)

where
(
∗tu
ℓ

)
is involution in Atu

ℓ and µ
[2]
v(ℓ)

: Atu
ℓ ⊗ Atu

ℓ → Atu
ℓ is the binary product of

doubles. If ℓ = 0, then the conjugation is the identity map, as it should be for the reals R.
The addition and scalar multiplication are made componentwise in the standard way.

In this notation, the Cayley–Dickson doubling process is defined by the recurrent
multiplication formula

µ
[2]
v(ℓ+1)

[(
a′
(ℓ)

b′
(ℓ)

)
,

(
a′′
(ℓ)

b′′
(ℓ)

)]
=

 µ
[2]
ℓ

[
a′
(ℓ), a′′

(ℓ)

]
− µ

[2]
ℓ

[(
b′′
(ℓ)

)∗ℓ
, b′

(ℓ)

]
µ
[2]
ℓ

[
b′′
(ℓ), a′

(ℓ)

]
+ µ

[2]
ℓ

[
b′
(ℓ),
(

a′′
(ℓ)

)∗ℓ]
 (74)

=

 a′
(ℓ) ·ℓ a′′

(ℓ) −
(

b′′
(ℓ)

)∗ℓ ·ℓ b′
(ℓ)

b′′
(ℓ) ·ℓ a′

(ℓ) + b′
(ℓ) ·ℓ

(
a′′
(ℓ)

)∗ℓ
 ≡

(
a(ℓ+1)
b(ℓ+1)

)
∈ Atu

ℓ+1, (75)

and the recurrent conjugation

(
a(ℓ)

b(ℓ)

)∗tu
ℓ+1

=

(
a∗ℓ
(ℓ)

−b(ℓ)

)
∈ Atu

ℓ+1, a(ℓ), b(ℓ) ∈ Aℓ. (76)

Then, we use the isomorphism (38) which now becomes

Atu
ℓ+1

∼= Aℓ+1. (77)

To go to the next level of recursion from that obtained so far, Aℓ+1, we use (74)–(77)
while changing ℓ → ℓ+ 1. The dimension of the algebra Aℓ is

D(ℓ) = 2ℓ, (78)

such that each element can be presented in the form of 2ℓ-tuple of reals
a(ℓ),1
a(ℓ),2

...
a(ℓ),2ℓ

 ∈ Aℓ, (79)
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and the conjugated 2ℓ-tuple becomes
a(ℓ),1
−a(ℓ)2

...
−a(ℓ),2ℓ

, a(ℓ),k ∈ R. (80)

For clarity, we intentionally mark elements and operations at the ℓ-th level explicitly,
because they really are different for different ℓ. The example with ℓ = 0 just obtains
the algebra of complex numbers A1 ≡ C from the algebra of reals A0 ≡ R (36)–(38).
All the binary division algebras D = R,C,H,O can be obtained by the Cayley–Dickson
construction [8].

6.2. Concrete (Hyperembedding) Approach

Alternatively, one can reparametrize the pairs (72) satisfying the complex-like multi-
plication (74), as the field extension Âℓ = Aℓ(iℓ) by one complex-like unit iℓ on each ℓ-th
stage of iteration, ℓ ≥ 0. The Cayley–Dickson doubling process is given by the iterations

Âℓ+1 =
〈
{Aℓ(iℓ)} | (+), µ̂

[2]
ℓ+1, (∗ℓ+1)

〉
(iℓ+1), i2

ℓ = −1, i2
ℓ+1 = −1, iℓ+1iℓ = −iℓiℓ+1. (81)

In a component form, it is given by

z(ℓ+1) = z(ℓ),1 + z(ℓ),2 ·ℓ+1 iℓ+1 = z(ℓ),1 + µ̂
[2]
ℓ+1

[
z(ℓ),2, iℓ+1

]
∈ Âℓ+1, z(ℓ),1, z(ℓ),2 ∈ Âℓ. (82)

The product in Âℓ+1 can be expressed through the product of the previous stage from
Âℓ and conjugation by using the anticommutation of the imaginary units from different
stages iℓ+1iℓ = −iℓiℓ+1 (see (81)). Thus, we obtain the standard complex-like multiplication
(see (37) and (75)) on each ℓ-th stage of the Cayley–Dickson doubling process

z′(ℓ+1) ·ℓ+1 z′′(ℓ+1)

=
(

z′(ℓ),1 ·ℓ z′′(ℓ),1 −
(

z′′(ℓ),2
)∗ℓ ·ℓ z′(ℓ),2

)
+
(

z′′(ℓ),2 ·ℓ z′(ℓ),1 + z′(ℓ),2 ·ℓ
(

z′′(ℓ),1
)∗ℓ) ·ℓ+1 iℓ+1, (83)

or with the manifest form of different stage multiplications µ̂
[2]
ℓ and µ̂

[2]
ℓ+1 (needed to go on

higher arities)

µ̂
[2]
ℓ+1

[
z′(ℓ+1), z′′(ℓ+1)

]
=
(

µ̂
[2]
ℓ

[
z′(ℓ),1, z′′(ℓ),1

]
− µ̂

[2]
ℓ

[(
z′′(ℓ),2

)∗ℓ
, z′(ℓ),2

])
+ µ̂

[2]
ℓ+1

[(
µ̂
[2]
ℓ

[
z′′(ℓ),2, z′(ℓ),1

]
+ µ̂

[2]
ℓ

[
z′(ℓ),2,

(
z′′(ℓ),1

)∗ℓ])
, iℓ+1

]
. (84)

Let us consider the example of quaternion construction in our notation.

Example 7. In the case of quaternions ℓ = 1 and Âℓ+1 = Â2 = H, while Âℓ = Â1 = C. The
recurrent relations (82) for ℓ = 0, 1 become

z(2) = z(1),1 + z(1),2 ·2 i2, z(1),1, z(1),2 ∈ Â1 = C, z(2), i2 ∈ H, (85)

z(1),1 = z(0),11 + z(0),12 ·1 i1, z(0),11, z(0),12 ∈ Â0 = R, z(1),1, i1 ∈ C, (86)

z(1),2 = z(0),21 + z(0),22 ·1 i1, z(0),21, z(0),22 ∈ Â0 = R, z(1),2, i1 ∈ C. (87)
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After the substitution of (86) and (87) into (85), we obtain the expression of quaternions
with real coefficients z(0),αβ ∈ R, α, β = 1, 2, and two imagery units (from different parts of H)
i1 ∈ C \R ⊂ H and i2 ∈ H \C

z(2) = z(1),1 + z(1),2 ·2 i2 =
(

z(0),11 + z(0),12 ·1 i1

)
+
(

z(0),21 + z(0),22 ·1 i1

)
·2 i2

= z(0),11 + z(0),12 ·1 i1 + z(0),21 ·2 i2 +
(

z(0),22 ·1 i1

)
·2 i2. (88)

To return to the standard notation (47), we put z(2) = q, z(0),11 = a, z(0),12 = b, z(0),21 = c,
z(0),22 = d, i1 = i ∈ C, i2 = j ∈ H \C, i1 ·2 i2 = k ∈ H and obtain q = a + bi + cj + dk.
Similarly, the complex-like multiplication (83) can be also applied twice with ℓ = 0, 1 to obtain the
quaternion multiplication in terms of real coefficients (49).

6.3. Polyadic Cayley–Dickson Process

Now, we provide a generalization of the Cayley-Dickson construction to the polyadic
case in the framework of the second (embedding) approach using the field extension
formalism (see Section 6.2). The main iteration relation (81) will now contain, instead of
binary hypercomplex algebras Âℓ, n-ary algebras Â[nℓ ]

ℓ at each stage.

Definition 3. The polyadic Cayley–Dickson process is defined as the following iteration on n-ary
algebras

Â[nℓ+1]
ℓ+1 =

〈{
A[nℓ ]
ℓ (iℓ)

}
| (+), µ̂

[nℓ+1]
ℓ+1

〉
(iℓ+1),

i2
ℓ = −1, i2

ℓ+1 = −1, iℓ+1iℓ = −iℓiℓ+1, iℓ ∈ A[nℓ+1]
ℓ+1 , nℓ ≥ 2, ℓ ≥ 0. (89)

The concrete representation of the ℓ-th stage n-ary algebras Â[nℓ ]
ℓ is not important for

the general recurrence formula (89). Nevertheless, here we will use matrix polyadization to
obtain higher n-ary non-division algebras (Section 3). First, we will need the obvious

Lemma 1. The embedding of a block-monomial matrix into a block-monomial matrix gives a
block-monomial matrix.

Corollary 3. If the binary Cayley–Dickson construction gives a division algebra, then the corre-
sponding polyadic Cayley–Dickson process gives a nonderived n-ary non-division algebra, because
of its noninvertible elements.

Thus, the structure of the general algebra obtained by the polyadic Cayley–Dickson
process is richer than a one block-shift monomial matrix (11), it is the “tower” of such
monomial matrices of size (nℓ − 1)× (nℓ − 1) on ℓ-th stage embedded one into another.
The connection between near arities (and matrix sizes) is

nℓ+1 = κ(nℓ − 1) + 1, (90)

where κ is the polyadic power (1) [34].

Proposition 7. If the number of stages of the polyadic Cayley–Dickson process is ℓ, then the
dimension of the final algebra is (cf. (78))

DCD(ℓ) = D(A[n0,n1,...,nℓ ]
CD ) = 2ℓ(n0 − 1)(n1 − 1) . . . (nℓ − 1) (91)

where ni are the arities of the intermediate algebras. The size of the final matrix becomes

(n0 − 1)(n1 − 1) . . . (nℓ − 1)× (n0 − 1)(n1 − 1) . . . (nℓ − 1). (92)
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Proof. On the ℓ-th stage of the polyadic Cayley–Dickson process, each block-monomial
(nℓ − 1)× (nℓ − 1) matrix has (nℓ − 1) nonzero blocks of the cycle-shift shape (11). The
0-th stage corresponds to reals, which gives 20(n0 − 1) parameters. Then, the simple field
extension ℓ = 1 (82) with blocks of reals gives (n0 − 1) · 2(n1 − 1) parameters and so on.
Thus, the ℓ-th stage is given by (91).

More concretely, for the nonderived n-ary algebras, we have the dimensions

R[n0], D(R[n0]) = (n0 − 1),
C[n0,n1]

CD = R[n0]
CD (i1), D(C[n0,n1]

CD ) = 2(n0 − 1)(n1 − 1),
H[n0,n1,n2]

CD = C[n0,n1]
CD (i2), D(H[n0,n1,n2]

CD ) = 22(n0 − 1)(n1 − 1)(n2 − 1),
O[n0,n1,n2,n3]

CD = H[n0,n1,n2]
CD (i3), D(O[n0,n1,n2,n3]

CD ) = 23(n0 − 1)(n1 − 1)(n2 − 1)(n3 − 1),
...

...

A[n0,n1,...,nℓ ]
CD,ℓ = A[n0,n1,...,nℓ−1]

CD (iℓ), D(A[n0,n1,...,nℓ ]
CD ) = 2ℓ(n0 − 1)(n1 − 1) . . . (nℓ − 1).

(93)

The starting algebra R[n0] is presented by the Z-matrix (11) with n = n0 and real
entries (A = R).

Definition 4. The sequence of embedded cyclic shift block matrices in (93) will be called a polyadic
block-shift tower.

Remark 5. The shapes of the final matrices (93) are different from the cyclic shift weighted matrices
(11), but nevertheless, all the intermediate blocks are cyclic shift block matrices. Adjacent (in ℓ)
matrices do not have an arbitrary size, but are connected by (90).

Example 8. To clarify the above general formulas, we provide the shape of polyadic quaternion
matrices with ℓ = 2, and n0 = 5, n1 = 3, n2 = 4, as



· · · · · · · · · · · · · ⋆ · · · · · · · · · ·
· · · · · · · · · · · · · · ⋆ · · · · · · · · ·
· · · · · · · · · · · · · · · ⋆ · · · · · · · ·
· · · · · · · · · · · · ⋆ · · · · · · · · · · ·
· · · · · · · · · ⋆ · · · · · · · · · · · · · ·
· · · · · · · · · · ⋆ · · · · · · · · · · · · ·
· · · · · · · · · · · ⋆ · · · · · · · · · · · ·
· · · · · · · · ⋆ · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · ⋆ · ·
· · · · · · · · · · · · · · · · · · · · · · ⋆ ·
· · · · · · · · · · · · · · · · · · · · · · · ⋆
· · · · · · · · · · · · · · · · · · · · ⋆ · · ·
· · · · · · · · · · · · · · · · · ⋆ · · · · · ·
· · · · · · · · · · · · · · · · · · ⋆ · · · · ·
· · · · · · · · · · · · · · · · · · · ⋆ · · · ·
· · · · · · · · · · · · · · · · ⋆ · · · · · · ·
· · · · · ⋆ · · · · · · · · · · · · · · · · · ·
· · · · · · ⋆ · · · · · · · · · · · · · · · · ·
· · · · · · · ⋆ · · · · · · · · · · · · · · · ·
· · · · ⋆ · · · · · · · · · · · · · · · · · · ·
· ⋆ · · · · · · · · · · · · · · · · · · · · · ·
· · ⋆ · · · · · · · · · · · · · · · · · · · · ·
· · · ⋆ · · · · · · · · · · · · · · · · · · · ·
⋆ · · · · · · · · · · · · · · · · · · · · · · ·



(94)
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We have a 24 × 24 monomial matrix, 24 = (5 − 1)(3 − 1)(4 − 1) by (93), where dots
denote zeroes and stars denote nonzero entries. The dimension of this polyadic quaternion algebra
represented by (94) is 22 · 24 = 96, because of the two simple field extensions (85)–(88). This is a
13-ary quaternion non-division algebra. If there were to be no further stages of the Cayley–Dickson
process, and the 24 × 24 monomial matrix would not be composed, having the form (11), then it
would give a 25-ary algebra.

Thus, we present the polyadic Cayley-Dickson process in the component form (82),
but instead of the elements z(ℓ) of the ℓ-th stage, we place the Z-matrices (11) of suitable
sizes. The resulting matrix is still monomial, and so its determinant is proportional to the
product of elements. The subalgebra of invertible matrices corresponds to a division n-ary
algebra.

Theorem 5. The invertible elements (which are described by Z-matrices with a nonzero determi-
nant) of the polyadic Cayley–Dickson construction D[n]

CD (for the first stages ℓ = 0, 1, 2, 3) (93) form

the subalgebra D[n]
CD,div ⊂ D[n]

CD which is a polyadic division n-ary algebra D[n]
CD,div corresponding

to the binary division algebras D = R,C,H,O.

To conclude, the matrix polyadization procedure applied to division algebras leads, in
general, to non-division algebras, because it is presented by monomial matrices (represent-
ing nonzero noninvertible elements) which become noninvertible when at least one entry
vanishes. However, the subalgebras of invertible elements can be considered as new n-ary
division algebras.

7. Polyadic Product of Vectors

Now, we will show that the matrix polyadization procedure (Section 3) is connected
with a new product of vectors in a vector space, which we will consider below.

First, we recall some properties of monomial and related matrices [47]. An arbitrary
monomial (or generalized permutation) matrix Mmon (over a field F× = F \ {0}, and so
having nonzero entries) can be presented as a product of an invertible diagonal matrix
Mdiag and a permutation matrix Mper

Mmon = Mdiag Mper. (95)

The set of all m × m monomial matrices form a binary subgroup Gmon of the general
linear group GLm(F), while the set of monomial matrices of the special fixed shape of the
cyclic shift weighted matrices (11), form a nonderived (m + 1)-ary group (see Section 3).
Abstractly, (95) can be considered as the matrix representation of the wreath product of
F× and the symmetric group Sm, because the group of diagonal matrices is isomorphic to
(F×)

m [47]. In general, a monomial representation of a binary groupG is a homomorphism
to some binary subgroup of Gmon.

On the other hand, there exists the procedure of vectorization (see, e.g., [51,52]) which
establishes a correspondence between (for instance square) m × m matrices and m2-tuples
(which can be interpreted as coordinate expressions of m2 × 1 column vectors in a vector
space) derived by stacking the columns of the matrix, such that

vecF : Fm×m → Fm2
. (96)

In general, vectorization is a homomorphism. In particular, for diagonal matrices we
have

vecF
(

M ′
diag M ′′

diag

)
= vecF

(
M ′

diag

)
⊙ vecF

(
M ′′

diag

)
, (97)

where ⊙ is the element-wise product of m2-tuples. For the monomial matrices (95), we
define the following modification of vectorization.
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Definition 5. Reduced vectorization is the mapping of a monomial matrix into m-tuple

vec×F : Fm×m → Fm, (98)

which is derived from vectorization (96) by omitting zeroes on both sides.

Remark 6. The relation (97) is not valid for general monomial matrices (95). Nevertheless, we
will show that, for a special class of monomial matrices, the cycled shift weighted matrices (11), the
homomorphism (97) can be obtained for non-binary products on both sides, and that will allow us to
define a new kind of product of vectors (in any vector space).

Let VF be a finite-dimensional vector space (over a field F) of dimension m ≥ 2, such
that

VF ∋ v = v(x) =
m∑

i=1

xiei, xi ∈ F, (99)

where ei are canonical basis vectors.
In VF (satisfying the standard axioms), the only closed binary operation between

vectors themselves is addition. Introducing another closed binary operation between
vectors, which satisfies two-sided distributivity with the addition and compatibility with
scalars (from F), gives the bilinear product. A vector space VF (we do not consider its
concrete realization) endowed with a bilinear product becomes an algebra over a field F
(for further details and review, see, e.g., [53,54]).

The reduced vectorization (98) is not a binary homomorphism (see Remark 6), but can
be a polyadic homomorphism, if we consider a special kind of monomial m × m matrices,
the cyclic shift weighted matrices Msh f of the fixed shape (11).

To show this, we introduce a new product of vectors in a vector space VF.

Definition 6. In m-dimensional vector space VF, we define (m + 1)-ary (polyadic) product of
vectors

µ
[m+1]
⋆

[
v
(
x′
)
, v
(
x′′
)
, . . . , v

(
x′′′
)
v
(
x′′′′
)]

=

 m+1︷ ︸︸ ︷
x′1x′′2 . . . x′′′m x′′′′1

e1

+

 m+1︷ ︸︸ ︷
x′2x′′3 . . . x′′′1 x′′′′2

e2 + . . . +

 m+1︷ ︸︸ ︷
x′mx′′1 . . . x′′′m−1x′′′′m

em, x′i , x′′i , . . . , x′′′i x′′′′i ∈ F. (100)

Remark 7. The polyadic product of vectors (100) in components is not elementwise, but cyclic
braided-like. Such products appeared in higher regular semigroups and braid groups [34], as well as
in semisupermanifold theory [55].

Consider the reduced vectorization vec×F (98) of the cyclic shift weighted matrices
given by Msh f (x) 7→ v(x) or (cf. (11))

Msh f (x) =



0 x1 . . . 0 0
0 0 x2 . . . 0

0 0
. . . . . .

...
...

...
. . . 0 xm−1

xm 0 . . . 0 0


7→ v(x) = x1e1 + x2e2 + . . . + xm−1e1 + xmem, xi ∈ F. (101)
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Proposition 8. The reduced vectorization vec×F of the cyclic shift weighted matrices (101) is a
polyadic or (m + 1)-ary homomorphism.

Proof. The product of (m + 1) matrices Msh f (x) (but not fewer) is a cyclic shift weighted

matrix of the form such that the set
{

Msh f (x)
}

is a nonderived (m + 1)-ary semigroup (cf.
(15))

m+1︷ ︸︸ ︷
Msh f

(
x′
)

Msh f
(
x′′
)

. . . Msh f
(
x′′′
)

Msh f
(
x′′′′
)

=



0

m+1︷ ︸︸ ︷
x′1x′′2 . . . x′′′m x′′′′1 . . . 0 0

0 0

m+1︷ ︸︸ ︷
x′2x′′3 . . . x′′′1 x′′′′2 . . . 0

0 0
. . . . . .

...

...
...

. . . 0

m+1︷ ︸︸ ︷
x′m−1x′′m . . . x′′′m−2x′′′′m−1

m+1︷ ︸︸ ︷
x′mx′′1 . . . x′′′m−1x′′′′m 0 . . . 0 0


(102)

7→ µ
[m+1]
⋆

[
v
(
x′
)
, v
(
x′′
)
, . . . , v

(
x′′′
)
v
(
x′′′′
)]

.

The statement now follows from comparing (102) with (100) and (101).

Definition 7. A vector space VF equipped with the (m + 1)-ary (polyadic) product of vectors (100)
becomes (m + 1)-ary algebra A[m+1](F) over a field F.

Proposition 9. The (m + 1)-ary algebra A[m+1](F) is totally (polyadic) associative.

Proof. It follows from the associativity of binary matrix multiplication Msh f (x) (102) and
the definition of reduced vectorization (101).

We define the structure constants of A[m+1](F) through the basis vectors ei by

µ
[m+1]
⋆

[
ei1 , ei2 , . . . , eim , eim+1

]
=

m∑
j=1

f j
i1,i2,...,im ,im+1

ej, f j
i1,i2,...,im ,im+1

∈ F. (103)

Theorem 6. The structure constants of the (m + 1)-ary algebra A[m+1](F) are

f 1
1,2,3,...,m−1,m,1 = 1, f 2

2,3,4,...m,1,2 = 1, . . . , f m−1
m−1,m,1,2...,m−3,m−2,m−1 = 1, f m

m,1,2...m−2,m−1,m = 1, (104)

while f j
i1,i2,...,im ,im+1

having other combinations of indices are zero.

Proof. It follows from the explicit form of the (m + 1)-ary product (100) and from the
multilinearity of µ

[m+1]
⋆ , that is, the polyadic distributivity with addition (on each place)

µ
[m+1]
⋆

[
v1
(
x′
)
+ v2

(
x′
)
, v
(
x′′
)
, . . . , v

(
x′′′
)
, v
(
x′′′′
)]

= µ
[m+1]
⋆

[
v1
(
x′
)
, v
(
x′′
)
, . . . , v

(
x′′′
)
, v
(
x′′′′
)]

+ µ
[m+1]
⋆

[
v2
(
x′
)
, v
(
x′′
)
, . . . , v

(
x′′′
)
, v
(
x′′′′
)]

, (105)

and compatibility with scalars
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µ
[m+1]
⋆

[
λ′v
(
x′
)
, λ′′v

(
x′′
)
, . . . , λ′′′v

(
x′′′
)
, λ′′′′v

(
x′′′′
)]

=
(
λ′λ′′ . . . λ′′′λ′′′′)µ[m+1]

⋆

[
v1
(
x′
)
, v
(
x′′
)
, . . . , v

(
x′′′
)
, v
(
x′′′′
)]

, λ′, λ′′, . . . λ′′′, λ′′′′ ∈ F. (106)

We insert the expansions (99) into (100) and then use the definition of the structure
constants (103) taking into account (105) and (106) to obtain the result.

Corollary 4. If Msh f (x) is monomial (having no zero entries xi ∈ F\{0}), the vectorization vec×F
(98) becomes a polyadic isomorphism.

Proposition 10. If xi ∈ F\{0}, the set of vectors with multiplication (100) becomes a nonderived
(m + 1)-ary group with the quervector ṽ (5) (the polyadic analog the “inverse”) having the form

ṽ(x) =
(

1
x2x3 . . . xm

)
e1 +

(
1

x3x4 . . . xmx1

)
e2 + . . . +

(
1

xmx1 . . . xm−1

)
em, xi ∈ F\{0}. (107)

Proof. To obtain the quervector ṽ, we use the nonderived (m + 1)-ary product (100) and
the definition (5), also equations (28) in the notation (102).

Corollary 5. The corresponding nonderived (m + 1)-ary algebra A[m+1](F) with xi ∈ F\{0}
becomes a division algebra A[m+1]

div (F) which is polyadically isomorphic to the division algebra of
monomial m × m matrices, and the cyclic shift weighted matrices (101), see (11) and Theorem 3.

Let us consider a simple example.

Example 9. In any three-dimensional vector space VR3 over R3 (of any nature, with no additional
structures, such as an inner product, etc., needed), we can define the nonderived associative 4-ary
product of vectors

µ
[4]
⋆

[
v
(
x′
)
, v
(
x′′
)
, v
(
x′′′
)
, v
(
x′′′′
)]

=
(
x′1x′′2 x′′′3 x′′′′1

)
e1 +

(
x′2x′′3 x′′′1 x′′′′2

)
e2 +

(
x′3x′′1 x′′′2 x′′′′3

)
e3. (108)

The vector space VR3 equipped with the product (108) becomes a nonderived 4-ary algebra
A[4](R) over R. Its nonzero structure constants (103) are

f 1
1231 = 1, f 2

2312 = 1, f 3
3123 = 1. (109)

In the general case, A[4](R) contains zero divisors, but for all nonzero coordinates xi ∈ R\{0},
the algebra becomes the division algebra A[4]

div(R). The polyadic unit is v(1) = e1 + e2 + e3, and
each element v(x) has a quervector ṽ(x) (polyadic analog of the binary inverse) determined by the
equation (followed from (5))

µ
[4]
⋆ [v(x), v(x), v(x), ṽ(x)] = v(x), (110)

such that
ṽ(x) =

1
x2x3

e1 +
1

x3x1
e2 +

1
x1x2

e3, xi ∈ R\{0}. (111)
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As a simple numerical example, take four vectors with all nonvanishing coordinates, then each
one has a quervector with respect to the 4-ary product of vectors ṽ (110)

v′ = v
(
x′
)
= 2e1 + 3e2 + 4e3, ṽ′ =

1
12

e1 +
1
8

e2 +
1
6

e3, (112)

v′′ = v
(
x′′
)
= 3e1 + 1e2 + 5e3, ṽ′′ =

1
5

e1 +
1

15
e2 +

1
3

e3, (113)

v′′′ = v
(
x′′′
)
= 4e1 + 3e2 + 5e3, ṽ′′′ =

1
15

e1 +
1

20
e2 +

1
12

e3, (114)

v′′′′ = v
(
x′′′′
)
= 5e1 + 3e2 + 2e3, ṽ′′′′ =

1
6

e1 +
1

10
e2 +

1
15

e3. (115)

The 4-ary product (108) of the vectors (112)–(115) is

µ
[4]
⋆

[
v′, v′′, v′′′, v′′′′] = 50e1 + 180e2 + 75e3. (116)

Thus, we have shown that, in any m-dimensional vector space VF over a field F, we
can introduce a new nonderived polyadic (or (m + 1)-ary) product of vectors µ

[m+1]
⋆ (100).

The corresponding (m + 1)-ary algebra is associative and becomes a division algebra for
all vectors with nonvanishing coordinates, and it is isomorphic to the polyadic division
algebras obtained by the matrix polyadization procedure (Section 4).

8. Polyadic Imaginary Division Algebras

Here, we introduce a non-matrix polyadization procedure which allows us to obtain
ternary division algebras from ordinary binary normed division algebras. Let us exploit
the notations of the concrete hyperembedding approach from Section 6.2. First, we show
that some version of ternary division algebra structure can be obtained by a new iterative
process without introducing additional variables.

Definition 8. We define the ternary “imaginary tower” of algebras by

A[3]
CD,ℓ+1 = ACD(iℓ) · iℓ+1 =

〈{
z(ℓ)(iℓ) · iℓ+1

}
| (+), µ

[3]
ℓ+1

〉
, i2
ℓ = −1, iℓ+1iℓ = −iℓiℓ+1, (117)

where ℓ ≥ 0.

The multiplication µ
[3]
ℓ+1 in (117) is nonderived ternary, because i2

ℓ ≁ iℓ, but i3
ℓ = −iℓ

for ℓ ≥ 1.

Theorem 7. If the initial algebra ACD(iℓ) is a normed division algebra, then its iterated imaginary

version A[3]
CD,ℓ+1 (117) is the ternary division algebra of the same (initial) dimension D(ℓ) and

norm.

Proposition 11. The ternary algebras A[3]
CD,ℓ+1 are not subalgebras of the initial algebras ACD(iℓ).

Proof. This is because the multiplications in the above algebras have different arities,
despite the underlying sets of imaginary algebras being subsets of the corresponding initial
algebras.

Let us now present the concrete expressions for the initial division algebras.

8.1. Complex Number Ternary Division Algebra

The first algebra (with ℓ = 0) is the ternary division algebra of pure imaginary complex
numbers having the dimension D(0) = D(R) = 1

A[3]
CD,1 ≡ C[3]

= R · i1, z(1) = bi1 ∈ C, i2
1 = −1, b ∈ R, (118)
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which is unitless. The multiplication in C[3]
is ternary nonderived and commutative

µ
[3]
1

[
z′(1), z′′(1), z′′′(1)

]
= −b′b′′b′′′i1 ∈ C[3]

. (119)

The norm is the absolute value in C (module)
∥∥∥z(1)

∥∥∥
(1)

= |b|, and it is ternary multiplicative

(from (119)) ∥∥∥µ
[3]
1

[
z′(1), z′′(1), z′′′(1)

]∥∥∥
(1)

=
∥∥∥z′(1)

∥∥∥
(1)

∥∥∥z′′(1)
∥∥∥
(1)

∥∥∥z′′′(1)
∥∥∥
(1)

∈ R, (120)

such that the corresponding map C[3] → R is a ternary homomorphism. The querelement
of z(1) (5) is now defined by

µ
[3]
1

[
z(1), z(1), z̃(1)

]
= z(1), (121)

which gives

z̃(1) =
1

z(1)
= − i1

b
, b ∈ R\{0}. (122)

Thus, C[3]
is a ternary commutative algebra, which is indeed a division algebra,

because each nonzero element has a querelement, i.e., it is invertible, so all equations of
type (121) with different z′s have a solution.

8.2. Half-Quaternion Ternary Division Algebra

The next iteration case (ℓ = 1) of the “imaginary tower” (117) is more complicated and
leads to pure imaginary ternary quaternions of dimension D(1) = D(C) = 2

A[3]
CD,2 ≡ H[3]

= C(i1) · i2, z(2) = (c + di1)i2 = ci2 + di1i2 ∈ H[3]
,

i2
1 = i2

2 = −1, i1i2 = −i2i1, i1 ∈ C, i2 ∈ H \C, c, d ∈ R. (123)

We can informally call H[3]
the ternary algebra of imaginary “half-quaternions”, be-

cause in the standard notation (see Example 7) z(2) from (123) is q = a+ bi + cj+ dk a=0,b=0−→
qhal f = cj + dk. The nonderived ternary algebra H[3]

is obviously unitless. The multiplica-

tion of the half-quaternions H[3]

µ
[3]
2

[
z′(2), z′′(2), z′′′(2)

]
= z′(2) · z′′(2) · z′′′(2) =

(
d′c′′d′′′ − c′d′′d′′′ − d′d′′c′′′ − c′c′c′′′

)
i2

+
(
c′d′′c′′′ − d′c′′c′′′ − c′c′′d′′′ − d′d′′d′′′

)
i1i2 ∈ H[3]

, (124)

is ternary nonderived (i.e., the algebra is closed with respect to the product of three elements,
but not fewer), noncommutative, and totally ternary associative (4)

µ
[3]
2

[
µ
[3]
2

[
z′(2), z′′(2), z′′′(2)

]
z′′′′(2), z′′′′′(2)

]
= µ

[3]
2

[
z′(2), µ

[3]
2

[
z′′(2), z′′′(2)z

′′′′
(2)

]
, z′′′′′(2)

]
= µ

[3]
2

[
z′(2), z′′(2), µ

[3]
2

[
z′′′(2)z

′′′′
(2), z′′′′′(2)

]]
. (125)

The norm is defined by the absolute value in the quaternion algebra H in the standard
way ∥∥∥z(2)

∥∥∥
(2)

=
∣∣∣z(2)∣∣∣ =√c2 + d2. (126)
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The norm (126) is ternary multiplicative∥∥∥µ
[3]
2

[
z′(2), z′′(2), z′′′(2)

]∥∥∥
(2)

=
∥∥∥z′(2)

∥∥∥
(2)

∥∥∥z′′(2)
∥∥∥
(2)

∥∥∥z′′′(2)
∥∥∥
(2)

∈ R, (127)

such that the corresponding map H[3] → R is a ternary homomorphism.

Proposition 12. The ternary analog of the sum of two squares’ identity is(
d′c′′d′′′ − c′d′′d′′′ − c′c′c′′′ − d′d′′c′′′

)2
+
(
c′d′′c′′′ − d′c′′c′′′ − c′c′′d′′′ − d′d′′d′′′

)2

=
(
(c′)2 + (d′)2

)(
(c′′)2 + (d′′)2

)(
(c′′′)2 + (d′′′)2

)
. (128)

Proof. It follows from the ternary multiplication formula (124) and the multiplicativity
(127) of the norm (126).

Remark 8. The ternary sum of two squares’ identity (128) cannot be derived from the binary sum
of two squares’ identity (Diophantus, Fibonacci) or from Euler’s sum of four squares’ identity, while
it can be considered an intermediate (triple) identity.

The querelement of z(2) (5) is now defined by

µ
[3]
2

[
z(2), z(2), z̃(2)

]
= z(2), (129)

which gives

z̃(2) = − ci2 + di1i2

c2 + d2 ∈ H[3]
, c2 + d2 ̸= 0, c, d ∈ R. (130)

It follows from (130) that H[3]
(123) is a noncommutative nonderived ternary algebra, which

is indeed a division algebra, because each nonzero element z(2) has a querelement z̃(2), i.e.,
it is invertible, and equations of type (121) have solutions.

8.3. Half-Octonion Ternary Division Algebra

The next case (ℓ = 2) gives pure imaginary ternary octonions of dimension D(2) =
D(H) = 4

A[3]
CD,3 ≡ O[3]

= H(i1, i2) · i3, z(3) = (a + bi1 + ci2 + di1i2)i3 = ai3 + bi1i3 + ci2i3 + di1i2i3,

i2
1 = i2

2 = i2
3 = −1, i1i2 = −i2i1, i1i3 = −i3i1, i2i3 = −i3i2,

i1 ∈ C, i2 ∈ H \C, i3 ∈ O \H, a, b, c, d ∈ R. (131)

We informally can call O[3]
the nonderived ternary algebra of imaginary “half-octonions”,

which is obviously unitless. In the standard notation (with seven imaginary units e1 . . . e7),
the “half-octonion” is

ohal f = z(3) = ae4 + be5 + ce6 + de7. (132)

Remark 9. It is well known (see, e.g., [56,57]), that the algebra of octonions O is not a field, but
a special nonassociative loop (quasigroup with an identity), the Moufang loop (see, e.g., [58,59]).

Because the ternary algebra O[3] of imaginary “half-octonions” is unitless, it cannot be a ternary
loop [60].

Recall that the binary algebra of ordinary octonions O =⟨{z} | (+), (•)⟩ is not as-
sociative, and therefore, a triple product in O is not unique, because (z′ • z′′) • z′′′ ̸=
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z′ • (z′′ • z′′′), z ∈ O. We introduce the ternary multiplication for the “half-octonions”

z(3) ∈ O[3]
(132) in the unique way as the following arithmetic mean

µ
[3]
3

[
z′(3), z′′(3), z′′′(3)

]
=

(
z′(3) • z′′(3)

)
• z′′′(3) + z′(3) •

(
z′′(3) • z′′′(3)

)
2

. (133)

Proposition 13. The nonderived nonunital ternary algebra of imaginary “half-octonions” (131)

O[3]
=
〈{

z(3)
}
| (+), µ

[3]
3

〉
(134)

is closed under the multiplication (133) and ternary associative.

Proof. The closeness of the product µ
[3]
3 is obvious, and the ternary total associativity of

µ
[3]
3 (similar to (125)) follows from (133).

In components, the multiplication (133) becomes

µ
[3]
3

[
z′(3), z′′(3), z′′′(3)

]
=
(
a′′
(
b′b′′′ + c′c′′′ + d′d′′′

)
− a′′′

(
b′b′′ + c′c′′ + d′d′′

)
+ a′

(
b′′b′′′ + c′′c′′′ + d′′d′′′

)
− a′a′′a′′′

)
i3

+
(
b′′
(
a′a′′′ + c′c′′′ + d′d′′′

)
+ b′′′

(
a′a′′ + c′c′′ + d′d′′

)
− b′

(
a′′a′′′ + c′′c′′′ + d′′d′′′

)
− b′b′′b′′′

)
i1i3

+
(
c′′
(
a′a′′′ + b′b′′′ + d′d′′′

)
− c′′′

(
a′a′′ + b′b′′ + d′d′′

)
− c′

(
a′′a′′′ + b′′b′′′ + d′′d′′′

)
− c′c′′c′′′

)
i2i3

+
(
d′′
(
a′a′′′ + b′b′′′ + c′c′′′

)
− d′′′

(
a′a′′ + b′b′′ + c′c′′

)
− d′

(
a′′a′′′ + b′′b′′′ + c′′c′′′

)
− d′d′′d′′′

)
i1i2i3. (135)

The querelement z̃(3) (5) of z(3) from O[3]
is defined by

µ
[3]
3

[
z(3), z(3), z̃(3)

]
= z(3), (136)

where z̃(3) can be on any place. In components, we obtain (cf. half-quaternions (130))

z̃(3) = − ai3 + bi1i3 + ci2i3 + di1i2i3

a2 + b2 + c2 + d2 ∈ O[3]
, a2 + b2 + c2 + d2 ̸= 0, a, b, c, d ∈ R. (137)

It follows from (137) that O[3]
is a division algebra, because each nonzero element z(3) has a

querelement z̃(3), i.e., it is invertible.
Thus, we have constructed the noncommutative nonderived ternary division algebra

of half-octonions O[3]
, which is nonunital and totally associative.
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